
KV Cache is More Robust Than You Think in 

Large Language Models

canarypwn

Originally published at aaaab3n.moe

1 Introduction
Recently, I have been researching bug reproduction in SGLang and vLLM. During my bug 

hunting, I encountered an intriguing issue: SGLang#17839 (archive).

Two aspects of this issue caught my interest. First, the gpt-oss model (the 120b variant) only 

achieves 85% accuracy on the gsm8k benchmark. For readers unfamiliar with gsm8k, it is a 

standard evaluation dataset consisting of grade-school math problems, such as “64 cookies for 

16 people, how many cookies does each person get?” It is hard to imagine a SoTA open-source 

model in mid-2025 struggling with a significant fraction of these questions.

Many works in our community leverage open-source models to evaluate coding ability, and 

during rebuttals, reviewers often ask, “What if you switch to an open-source model?” My 

question is: How can you trust a model that fails at grade-school math? While I am not an 

expert in LLM evaluation and acknowledge that methodology is often more important than 

the model choice itself, I strongly suggest using the best model available unless you precisely 

understand your model’s behavior.

The second aspect relates to the bug itself. Briefly, when using a legal but misconfigured SGLang 

setup, the model’s KV Cache (its context memory) becomes corrupted in the computer memory

—specifically, the address pointers of the KV cache point to incorrect locations. Common sense 

suggests the LLM should fail to output anything meaningful, as the next token generated 

depends strictly on the preceding sequence. If the KV cache is scrambled, the dependency chain 

is broken. However, the evaluation results still showed a surprisingly high 75% accuracy. A 

severe infrastructure bug that scrambles the model’s entire context memory, yet barely dents the 

final answers.

I formed a hypothesis: humans can ignore noise in language context—for example, ignoring 

irrelevant conditions in “trap” exam questions. Do LLMs possess a similar ability to ignore 

noise within their internal KV Cache? While there is extensive research on prompt injection 

and KV cache compression, my investigation offers a different angle. As Anthropic noted in a 

postmortem of their own inference bugs, “Claude often recovers well from isolated mistakes”—

standard evaluations simply failed to surface the degradation [1]. This resilience is exactly what 

I set out to measure.

1.1 Methodology

All results and source code are open-sourced at Nyovelt/Internal-Robustness. Most of the code 

was implemented by Claude Code, as the logic is straightforward. As someone who deals with 

the vLLM KV cache daily, I briefly examined the code to ensure the method for modifying the 

KV cache was technically sound.

https://aaaab3n.moe/kv-cache-robustness
https://github.com/sgl-project/sglang/issues/17839
https://web.archive.org/web/20260213200842/https://github.com/sgl-project/sglang/issues/17839
https://github.com/Nyovelt/Internal-Robustness


The rationale is simple: I systematically corrupt the KV cache with different noise types (Gauss

ian Noise, Zeros, Unrelated Prompts) and evaluate the performance on the gsm8k benchmark. I 

used two older but differently sized models: Qwen2.5-1.5B-Instruct and Qwen2.5-7B-Instruct.

For each corruption rate 𝑟 ∈ [0, 1], I randomly select 𝑟 × 100% of the KV cache entries during 

autoregressive decoding and replace them with the chosen noise type. Each experiment uses 100 

samples from the GSM8K test split, with greedy decoding and a maximum of 512 new tokens.

For the layer-sensitivity analysis, I divide the 28-layer Qwen2.5-7B into four quarters (L0–6, L7–

13, L14–20, L21–27) and two halves (L0–13, L14–27), corrupting only the selected band at three 

rates around the cliff point (𝑟 ∈ {0.01, 0.02, 0.04}).

The research questions are:

• How robust is the KV Cache globally?

• How robust are specific layers within the KV Cache?

1.2 Evaluation

1.2.1 Noise-type Comparison

Corruption 

Rate

7B Gauss

ian

7B Zeros 7B Distrac

tor

1.5B Gauss

ian

1.5B Zeros 1.5B Dis

tractor

0.00 (base

line)

0.87 0.87 0.87 0.66 0.66 0.66

0.02 0.02 0.75 0.86 0.00 0.39 0.55

0.05 0.00 0.71 0.83 0.00 0.19 0.56

0.08 0.03 0.63 0.81 0.01 0.13 0.40

0.10 0.02 0.62 0.81 0.00 0.15 0.41

0.15 0.02 0.50 0.72 0.06 0.06 0.27

0.20 0.03 0.36 0.63 0.01 0.05 0.27

0.25 0.01 0.26 0.53 0.01 0.00 0.12

0.30 0.02 0.05 0.50 0.01 0.00 0.07

0.40 0.04 0.01 0.34 0.00 0.01 0.05

0.50 0.01 0.00 0.10 0.01 0.00 0.02

Table 1: Accuracy on GSM8K under different corruption rates and noise types.

0 0.1 0.2 0.3 0.4 0.5
Corruption Rate

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

Gaussian

Zeros

Distractor

Figure 1: Qwen2.5-7B accuracy vs. corruption 

rate.

0 0.1 0.2 0.3 0.4 0.5
Corruption Rate

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

Gaussian

Zeros

Distractor

Figure 2: Qwen2.5-1.5B accuracy vs. corrup

tion rate.



Results Analysis:

• Random Noise Sensitivity: For unstructured random noise (Gaussian), replacing just 2% of 

the KV Cache results in severe accuracy degradation. Both the 7B and 1.5B models collapse 

at the same 2% Gaussian cliff. Likely, the attention mechanism cannot ignore values that 

look nothing like real data. Each corrupted step compounds into the next, and within a few 

tokens, the output becomes pure hallucination.

• Structured Noise Robustness: For structured noise (like zeros or distractors), the model is 

significantly more robust. This is consistent with the behavior observed in the SGLang 

bug: even when replacing 30% of the KV cache with completely different content in the 7B 

model, it retains 50% accuracy. A possible explanation is that these “distractor” KV pairs 

remain within the distribution of training data—they look like real activations. The attention 

mechanism was trained specifically to focus on relevant context and suppress irrelevant 

context. It is doing exactly what it learned to do: filtering signal from noise.

1.2.2 Not All Layers Are Equal

To test whether certain layers are more critical than others, I divided the 28 layers of Qwen2.5-7B 

into four quarters and two halves, corrupting only the selected band with Gaussian noise at 

three rates near the cliff point.

Layer Band 𝑟 = 0.01 𝑟 = 0.02 𝑟 = 0.04

L0–6 (early) 0.71 0.64 0.51

L7–13 0.79 0.51 0.20

L14–20 (buffer) 0.79 0.86 0.81

L21–27 (late) 0.43 0.12 0.01

L0–13 (first half) 0.44 0.10 0.04

L14–27 (second half) 0.34 0.04 0.01

Table 2: Layer-band accuracy on GSM8K under Gaussian corruption (7B model, baseline 0.87).

0.01 0.02 0.03 0.04
Corruption Rate

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

L0–6

L7–13

L14–20

L21–27

Figure 3: Layer-band sensitivity under Gaussian corruption (7B model, baseline 0.87). L14–20 

is nearly unaffected; L21–27 collapses.

• Layers 14–20 (The Buffer Zone): These layers appear largely redundant—corrupting them 

barely changes accuracy (0.86 at 𝑟 = 0.02 vs. 0.87 baseline). They seem to perform non-

critical or highly redundant functions.



• Layers 21–27 (The Reasoning Engine): These are critical. Corrupting just 2% here degrades 

accuracy catastrophically, from 0.87 to 0.12. These final layers appear to be where the model 

actually computes the answer.

• Early Layers (0–6): These are moderately robust, encoding basic language understanding 

with some inherent redundancy (0.64 at 𝑟 = 0.02).

It resembles a factory assembly line. Disrupting the final quality-control station (late layers) 

ruins everything. Disrupting a middle packaging step (L14–20) barely matters because other 

steps compensate. Disrupting the raw material intake (early layers) causes moderate problems.

1.2.3 Bigger Models Are Not Tougher Against Random Noise

Both the 7B and 1.5B models collapse at the same 2% Gaussian cliff. Scale does not buy 

resilience against out-of-distribution corruption. However, the 7B model is more resilient against 

structured noise (zeros, distractors)—more parameters mean more redundancy for in-distrib

ution filtering.

1.3 Takeaways

1. Hardware Fault Tolerance: Even tiny memory errors (bit flips) could be catastrophic if they 

produce out-of-distribution activations. However, if errors result in zeroed-out values instead, 

models are surprisingly resilient.

2. Security: Activation-steering attacks that inject “realistic-looking” corruptions are harder 

for the model to detect than random perturbations. Ironically, however, simple random 

perturbations are far more damaging to performance.

3. Interpretability: The late layers (21–27) are where reasoning actually happens in Qwen2.5-7B. 

Layers 14–20 appear to be a “buffer zone” with high redundancy—a potential target for 

future pruning or efficiency research.

4. System Reliability: The attention mechanism’s robustness makes bugs in LLM inference 

systems harder to detect through output quality alone. Even a bug as severe as scrambling 

the KV cache might only produce a slight downgrade in the final answer quality rather 

than a total crash. As Anthropic’s postmortem put it, “the evaluations we ran simply didn’t 

capture the degradation users were reporting” [1]. Attention robustness is a double-edged 

sword: it guarantees graceful degradation, but makes silent infrastructure failures far harder 

to catch.

References
[1] Anthropic, “A Postmortem of Three Recent Issues.” [Online]. Available: https://www.

anthropic.com/engineering/a-postmortem-of-three-recent-issues

https://www.anthropic.com/engineering/a-postmortem-of-three-recent-issues
https://www.anthropic.com/engineering/a-postmortem-of-three-recent-issues

	1 Introduction
	1.1 Methodology
	1.2 Evaluation
	1.2.1 Noise-type Comparison
	1.2.2 Not All Layers Are Equal
	1.2.3 Bigger Models Are Not Tougher Against Random Noise

	1.3 Takeaways

	References

